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Comet for Machine Learning

Arti!cial intelligence (AI) is the ability of a computer to perform operations and tasks that are usually 
done by humans. AI includes di!erent sub"elds, such as machine learning, natural language processing, 
deep learning, and time series analysis. In this chapter, we will focus on machine learning, and in the 
following ones, you will review other sub"elds of AI, including natural language processing (Chapter 9, 
Comet for Natural Language Processing), deep learning (Chapter 10, Comet for Deep Learning), and 
time series analysis (Chapter 11, Comet for Time Series Analysis).

Machine learning aims at using computational algorithms to transform data into usable models. 
In other words, machine learning tries to build models that learn from data. You can use machine 
learning algorithms for di!erent purposes and in di!erent domains, such as describing a phenomenon, 
predicting future values, or detecting anomalies in a phenomenon under investigation. You have 
already learned some concepts about machine learning in previous chapters, including exploratory 
data analysis (Chapter 2, Exploratory Data Analysis in Comet) and model evaluation (Chapter 3, Model 
Evaluation in Comet). In this chapter, we will focus on model training, which involves building the 
correct model to represent a given phenomenon. 

In recent years, di!erent open source libraries and tools were available to build machine learning 
models. In this chapter, we will focus on scikit-learn and XG-Boost. You should already be familiar 
with scikit-learn, since you have already used it in the examples described in previous chapters. 
You have also learned how to integrate Comet with scikit-learn. In this chapter, you will 
implement a complete use case, which will permit you to implement a complete machine learning 
pipeline in Comet.

#e chapter is organized as follows:

• Introducing machine learning

• Reviewing the main machine learning models

• Reviewing the scikit-learn package

• Building a machine learning project from setup to report

Before moving on to the "rst step, let’s see the technical requirements to run the so$ware used in 
this chapter.
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Technical requirements
We will run all the experiments and code in this chapter using Python 3.8. You can download it from 
the o%cial website at https://www.python.org/downloads/ and choose version 3.8.  

#e examples described in this chapter use the following Python packages: 

• comet-ml 3.23.0

• matplotlib 3.4.3

• numpy 1.19.5

• pandas 1.3.4 

• scikit-learn 1.0

• shap 0.40.0

We have already described the "rst "ve packages and how to install them in Chapter 1, An Overview 
of Comet. So please refer back to that for further details on installation.

shap

shap is a Python package that permits you to calculate the Shapley value and plot some related graphs. 
To install the shap package, you can run the following command in a terminal:

pip install shap

For more details on the shap package, you can refer to its o%cial documentation, available at the 
following link: https://shap-lrjball.readthedocs.io/en/latest/index.html.

Now that you have installed all of the so$ware needed in this chapter, let’s move on to how to use 
Comet for machine learning, starting with reviewing some basic concepts on machine learning.

Introducing machine learning
Machine learning is a sub"eld of AI that aims to build models that automatically learn from data. You 
can use these models for di!erent purposes, such as describing a particular phenomenon, predicting 
future values, or detecting anomalies in an observed phenomenon. Machine learning has become 
very popular in recent years thanks to the spread of huge quantities of data that derive from di!erent 
sources, such as social media, open data, sensors, and so on.

#e section is organized as follows:

• Exploring the machine learning work&ow

• Classifying machine learning systems 



Introducing machine learning 255

• Exploring machine learning challenges

• Explaining machine learning models

Let’s start with the "rst step: exploring the machine learning work&ow.

Exploring the machine learning workflow

#e following "gure shows the simplest machine learning work&ow:

Figure 8.1 – The simplest machine learning workflow

Provided that you already know the problem you want to solve, there are four steps:

1. Data preprocessing: You prepare your data by performing all the cleaning operations, including 
dealing with missing values and anomalies, normalization, standardization, and dropping 
duplicates. In this phase, you also split your data into training, dev, and test sets.

2. Feature engineering: You choose the set of features in your data to send as input to the model.
3. Model training: You train your model on the training set, with a focus on tuning model 

parameters (hyperparameter tuning). In this phase, usually, you apply cross-validation.
4. Model evaluation: You evaluate the performance of your model on the dev set by choosing 

the set of evaluation metrics. You have already learned how to perform the model evaluation 
in Chapter 3, Model Evaluation in Comet.

We will review how scikit-learn permits you to implement the preceding steps later in this 
chapter in the Reviewing the scikit-learn package section.

Now that you have reviewed the simplest machine learning work&ow, we can move on to the next 
step: classifying machine learning systems.

Classifying machine learning systems

You can classify machine learning systems based on the following three main criteria:

• !e nature of the problem to solve (supervised, unsupervised, semi-supervised, and reinforcement 
learning)

• !e learning technique used (batch and online learning)

• !e internal nature of the algorithm (instance-based and model-based learning)
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Let’s investigate each criterion separately, starting with the "rst one: the nature of the problem to solve.

The nature of the problem to solve

In Chapter 3, Model Evaluation in Comet, you already encountered two types of machine learning 
models: supervised learning and unsupervised learning. #ere is an additional technique, called semi-
supervised learning. #e following are the main objectives of each technique:  

• #e main objective of supervised learning is to learn the mapping function between the input 
and the output values. In supervised learning, for each input value in the training set, you also 
know the output value, and the objective is to build a model that learns the mapping function 
from input to output. Output values are also known as labels. Once you have built the model, 
you can use it to predict the labels of new and unseen input values. #ere are two types of 
supervised learning: classi"cation and regression. You reviewed the basic concepts behind 
classi"cation and regression in Chapter 3, Model Evaluation in Comet.

• #e main objective of unsupervised learning is to group input values based on some criteria 
of similarity. #e main types of unsupervised learning include clustering, anomaly detection, 
and dimensionality reduction. You reviewed the basic concepts behind clustering in Chapter 
3. We will review the other two types of unsupervised learning in the Reviewing the scikit-learn 
package section.

• Semi-supervised learning has the same objective as supervised learning. However, in semi-
supervised learning, only a subset of input values is labeled, so the model should combine both 
supervised and unsupervised learning techniques to predict the output value. 

Now that you have learned how to classify machine learning models based on the nature of the problem 
to solve, we can move on to the next criterion: the learning technique used.

The learning technique used

If you consider the learning technique used, you can classify machine learning systems into the 
following two types:

• Batch learning systems: You perform the training process o'ine, just once. You cannot update 
the model on the &y. Usually, this technique requires a lot of computational resources.

• Online learning systems: You can train the system incrementally. Usually, in each step, you 
feed the system with a small batch of data, also called mini-batches. You can use this technique 
when you have a continuous &ow of data that you can feed to the model.

Now that you have learned how to classify machine learning models based on the learning technique 
used, we can move on to the "nal criterion: the internal nature of the algorithm.
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The internal nature of the algorithm

Depending on the internal nature of the algorithm, you can have the following types of learning:

• Instance-based learning: #e algorithm learns from data in the training set to "nd a data 
pattern that can be used for future predictions. In practice, the algorithm predicts the output 
for new samples based on similarity with the data in the training set. #is type of algorithm 
preserves the original training set that is used at each prediction. #e main drawback of this 
category of algorithms is that the model size could be huge if the training set size is huge. #e 
k-nearest neighbor classi"er, for example, falls in this category of algorithms.

• Model-based learning: #e algorithm builds a mathematical model that approximates the data 
in the training set. Once the algorithm has built the model, the original dataset can be deleted. 
#e decision tree classi"er is an example of model-based learning. #e main drawback of this 
category of algorithms is that you can hardly apply online learning in this case.

Now that you have brie&y reviewed how you can classify machine learning systems, we can move on 
to the next step: exploring machine learning challenges.

Exploring machine learning challenges

When you build a machine learning model, you may encounter di!erent challenges and issues that 
can be grouped into the following two big families:

• Data challenges

• Model challenges

Let’s investigate each family separately, starting with the "rst: data challenges.

Data challenges

#e following table shows the most common data challenges: 

Figure 8.2 – The most common data challenges
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#e table also describes some possible countermeasures against the described challenges. For example, 
if you have an insu%cient quantity of data, you may search for new data, or enrich the dataset with 
new data or even with synthetic data.

Model challenges

#e following table shows the most common model challenges:

Figure 8.3 – The most common model challenges

When compared to data challenges, model challenges are more complicated to solve because they 
depend on the speci"c model you are using. #e best way to deal with model challenges is to try 
di!erent models and select the one with the best performance.

Now that you have brie&y reviewed the main machine learning challenges, we can move on to the 
next step: explaining machine learning models.

Explaining machine learning models

Usually, you see a machine learning model as a black box that takes some features as input and produces 
an output (also called a target). What happens inside the black box depends on the speci"c algorithm 
you are using. To understand how each feature contributes to the output in the model, you can use 
di!erent techniques. In this section, you will learn about SHAP.

#e SHapley Additive exPlanations (SHAP) algorithm uses the concept of the Shapley value, which 
derives from game theory where you have a game and many players. In machine learning, the game 
is the output of the model and the players are the input features. #e Shapley value calculates the 
contribution of each player to the game. In other words, it calculates the contribution of each input 
feature to build the "nal prediction of the model. 
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For each observation in the training set, you have a di!erent game, thus you can use the Shapley value 
to analyze a single output each time.

Python provides a package, named shap, to calculate the Shapley value and to plot some useful 
graphs, which help you understand the contribution of each input feature to the output. #e shap 
library is fully integrated with Comet.

In the remainder of this section, you will learn the following topics:

• Using the shap library

• Integrating the shap library in Comet

Let’s start with the "rst topic: using the shap library.

Using the shap library

To calculate the Shapley value, you need to perform the following steps:

1. First, you should create an Explainer object. #e shap library provides di!erent types of 
Explainer objects, including, but not limited to, TreeExplainer, GradientExplainer, 
DeepExplainer, and so on. Each Explainer is related to the speci"c implemented 
algorithm. #e Explainer object receives as input the trained model, as shown in the 
following piece of code:

import shap

shap.initjs()

explainer = TreeExplainer(model)

You import the library, then you need to call the initjs() function, and, "nally, you can 
build the Explainer object. In this case, we have created a TreeExplainer.

2. Once you have created the object, you can calculate the Shapley value for a single observation 
or many observations as follows:

shap_values = explainer.shap_values(X)

If the model represents a classi"cation task, the shap_values() method returns a list 
containing the Shapley values for each target class.

3. Using the calculated Shapley values, you can plot di!erent graphs, including bar plots, decision 
plots, summary plots, and so on. For a complete list of descriptions of the available plots, you 
can refer to the shap o%cial documentation, available at the following link: https://shap.
readthedocs.io/en/latest/api_examples.html#plots.

Now that you have seen an overview of the shap package, we can investigate how to integrate the 
graphs produced with shap in Comet.
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Integrating the shap library in Comet

To integrate one or more graphs produced with the shap library in Comet, you can perform the 
following steps:

1. Import the Comet library before importing shap, as shown in the following piece of code:

from comet_ml import Experiment

import shap

shap.initjs()

2. Create a Comet Experiment and then an Explainer object as follows:

experiment = Experiment()

explainer = shap.Explainer()

3. Use any of the functions provided by shap to plot a graph as follows:

shap_values = explainer.shap_values(X_test)

shap.summary_plot(shap_values, X_test)

#e preceding code plots a summary plot for the Shapley values passed as input argument. #e 
graph will be automatically logged in Comet under the Graphics section. 

Now that you have learned some basic concepts regarding the shap library and how to integrate it 
in Comet, we can move on to the next step: a review of the main machine learning models.

Reviewing the main machine learning models
A machine learning model is an algorithm that can make predictions for some unseen data based on 
what it has learned from some training data. As already discussed in the preceding section, you can 
distinguish machine learning models into two categories, which depend on the speci"c task you want 
to solve: supervised models and unsupervised models.

Many machine learning models exist in the literature. In this section, you will review the most 
popular models used to perform supervised learning and unsupervised learning. We will focus on 
the following models in detail:

• Supervised learning

• Unsupervised learning

In the remainder of the section, you will review an introduction to the most popular machine learning 
models. For more details, you can read the books proposed in the Further reading section. Let’s start 
with the "rst category of models: supervised learning.
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Supervised learning

A supervised algorithm receives a sample as input, performs some computations, and returns a 
predicted value as output. If the output is a continuous variable, you will have a regression problem, 
but if the output is a discrete variable, such as a class label, you will have a classi"cation problem.

#e following supervised algorithms are some of the most popular ones:

• Linear regression: #e algorithm searches for a line that best "ts the input samples.

 � Logistic regression: #e algorithm uses the logistic unit to model the input samples. Contrary 
to what the name might suggest, logistic regression is used to solve classi"cation problems. 

 � Support vector machines (SVM): #e algorithm searches for a hyperplane that groups 
training data by common features.

 � Naive Bayes: #e algorithm assumes that the input features are independent. It uses Bayes’s 
theorem to produce results.

 � Decision trees: #e algorithm uses a tree to predict the output. Each node of the tree 
represents an input feature, whereas the leaves of the tree represent the possible outputs.

 � K-nearest neighbors: #e algorithm uses proximity to group the input samples and predict 
the output.

 � Random forest: #e algorithm uses multiple trees to predict the output.

A$er a brief overview of the most popular algorithms for supervised learning, we can move on to 
reviewing the algorithms for unsupervised learning.

Unsupervised learning

An unsupervised algorithm aims at grouping similar objects. A typical example of unsupervised 
learning is clustering.

One of the most popular algorithms for unsupervised learning is k-means, which tries to split the 
dataset into k non-overlapping sub-groups.

Now that you have learned the main machine learning models, we can move on to the next topic:  
a review of the scikit-learn package.
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Reviewing the scikit-learn package
scikit-learn is a very popular Python package for machine learning. You have already encountered 
this package in previous chapters. In particular, you have focused on some examples using supervised 
learning and model selection. However, the scikit-learn package also provides other classes 
and methods, as shown in the following "gure:

Figure 8.4 – An overview of the scikit-learn package

#e package is divided into the following subpackages:

• Preprocessing

• Dimensionality reduction

• Model selection

• Supervised learning

• Unsupervised learning

Let’s investigate each subpackage brie&y, starting with the "rst one: preprocessing. For a more in-depth 
analysis of each subpackage, you can refer to the Further reading section at the end of this chapter.
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Preprocessing

Preprocessing contains all of the classes and methods that permit us to manipulate the dataset before 
giving it as input to a machine learning model. You can also use the methods provided by pandas 
as an alternative to almost all of the classes and methods provided in the preprocessing subpackage.

Preprocessing includes classes for the following:

• Feature scaling to perform data standardization and normalization

• Feature binarization to convert features into binary values

• Feature encoding to convert categorical features into numerical values

• Non-linear transformations to apply non-linear transformations to features, such as power 
transform

• Other classes to perform other speci"c transformations

Now that you have brie&y reviewed the most important classes provided by the preprocessing package, 
we can analyze the next subpackage: dimensionality reduction.

Dimensionality reduction

Dimensionality reduction is a technique that reduces the number of input features from a high-
dimensional space to a low-dimensional space.

Dimensionality reduction is especially useful when you have millions of input features, which could slow 
down the model training process. However, although the use of dimensionality reduction techniques 
speeds up the training process, it still leads to the loss of information.

Dimensionality reduction is also useful for data visualization because if you reduce the number of 
features down to two or three, you can easily plot them and perform a visual exploratory data analysis. 

Figure 8.4 shows the most important techniques provided by scikit-learn to perform dimensionality 
reduction. Among them, the most popular technique is principal component analysis (PCA). #e 
following piece of code shows how to implement PCA in scikit-learn:

from sklearn.decomposition import PCA

pca = PCA(n_components=2)

X_reduced = pca.fit_transform(X)

We have used the PCA class, which receives as input the "nal dimensionality of features (n_components). 
To get the reduced feature dataset, you should call the fit_transform() method on the input 
features (X).

Now that you have seen an overview of the dimensionality reduction package, we can analyze the 
next subpackage: model selection.
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Model selection

Model selection includes the following techniques that help you select the best model for your problem:

• Cross-validation

• Hyperparameter tuning

• Metrics and curves

Let’s investigate the "rst two techniques, starting with cross-validation. 

Metrics and curves
You remember that model selection also includes the study of metrics and curves for model 
evaluation. We reviewed this aspect in Chapter 3, Model Evaluation in Comet, so you can refer 
to that for further details.

Cross-validation

Cross-validation is a technique that permits you to calculate the performance of a machine learning 
algorithm on a dataset. k-fold cross-validation is one of the most popular techniques to perform 
cross-validation. It divides the datasets in k non-overlapping folds, then it "ts k models and calculates 
the performance of each one. At each iteration, it uses k-1 folds as the training set and the remaining 
fold as the test set, as shown in the following "gure:

Figure 8.5 – k-fold cross-validation with k = 6
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#e "gure shows how the k-fold cross-validation algorithm builds the training and test sets at each 
iteration in the case of k = 6. A common value for k is 10, but, usually, you should run di!erent tests to 
calculate the most appropriate value for k. In the last section of this chapter, you will learn a practical 
strategy to calculate the best value for k in a practical example.

#e performance of the model is calculated as the average value of the results of the k models.

scikit-learn provides the KFold class to perform basic k-fold cross-validation. #is class 
receives the following parameters as input:

• n_splits: #e number of folds, representing the parameter k.

• shuffle: A Boolean representing whether or not to shu'e the dataset before splitting it 
into folds.

• random_state: If shuffle is True, random_state a!ects how shuffle is performed.

scikit-learn also provides other classes to perform cross-validation, such as StratifiedKFold 
and GroupKFold. For more details on them, you can refer to the scikit-learn o%cial 
documentation, available at the following link: https://scikit-learn.org/stable/
modules/cross_validation.html.

Now that you have reviewed the basic concepts behind cross-validation, we can move on to the next 
point: hyperparameter tuning.

Hyperparameter tuning

Hyperparameter tuning permits you to search for the best parameters of a speci"c machine learning 
algorithm. Usually, you perform hyperparameter tuning in combination with cross-validation. You 
have already learned how to perform hyperparameter tuning in Comet in Chapter 4, Workspaces, 
Projects, Experiments, and Models. In this chapter, you will review the classes and methods provided 
by scikit-learn to perform hyperparameter tuning.

In general, you de"ne a grid of parameters to test and you pass it as input of an algorithm, which "ts 
as many models as the di!erent combinations of parameters. Finally, the algorithm calculates the 
model with the best performance and returns it as the best model.

scikit-learn implements di!erent algorithms to perform hyperparameter tuning, including, 
but not limited to, the following ones:

• GridSearchCV: #e algorithm tests all of the possible combinations of parameters.

• RandomizedSearchCV: #e algorithm performs a randomized search over parameters.

• HalvingGridSearchCV: #e algorithm "rst tests all of the parameters on a small dataset, 
then iteratively discards the parameters with the lowest performance and continues the tests 
on the remaining parameters by adding new samples to the dataset.



Comet for Machine Learning266

In the last section of this chapter, you will see a practical example that uses the GridSearchCV 
algorithm. For more details on how to use the other algorithms, you can refer to the scikit-learn 
o%cial documentation, available at the following link: https://scikit-learn.org/stable/
modules/classes.html#module-sklearn.model_selection.

Now that you have reviewed the basic concepts behind hyperparameter tuning, we can move on to 
the next point: supervised and unsupervised learning.

Supervised and unsupervised learning

scikit-learn implements the most popular algorithms to perform both supervised and unsupervised 
learning. In all cases, to implement a model, you should perform the following steps:

1. Create the model as follows:

model = MyModel()

You should replace the MyModel() class with the speci"c class provided by scikit-learn, 
such as KNeighborsClassifier or LinearRegression.

2. Fit the model with the training set as follows:

model.fit(X_train, y_train)

3. Use the trained model to predict the output for unseen inputs as follows:

y_pred = model.predict(X_test)

#e preceding steps describe the very basic operations you should perform to build a machine learning 
model. In the following section of this chapter, you will implement a more complex example that also 
considers cross-validation and hyperparameter tuning as well as the integration with Comet. So, let’s 
move on to this practical example.

Building a machine learning project from setup to report
In this section, you will further improve the practical example of diamond cuts described in Chapter 
3, Model Evaluation in Comet, and deployed in Chapter 6, Integrating Comet into DevOps. In this 
chapter, you will focus on the following aspects:

• Reviewing the scenario

• Selecting the best model

• Calculating the SHAP value

• Building the "nal report
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Let’s start with the "rst step: reviewing the scenario.

Reviewing the scenario

As our use case, we will use the diamonds dataset provided by ggplot2 under the MIT licenses 
(https://ggplot2.tidyverse.org/reference/diamonds.html) and available on 
Kaggle as a CSV "le (https://www.kaggle.com/shivam2503/diamonds). With respect to 
the original version, already described in Figure 3.3 in Chapter 3, we use the cleaned version produced 
in the same chapter and shown in the following "gure:

Figure 8.6 – The cleaned version of the diamonds dataset

#e dataset contains 53,940 rows and 10 columns. #e objective of this scenario is to build a classi"cation 
model that, when given a set of input features, predicts the target category (Gold, Silver). We suppose 
that the input features are stored in a variable called X and the target in a variable called y, as shown 
in the following piece of code:

X = df.drop("target", axis = 1)

y = df["target"]

We have supposed that the dataset is loaded as a pandas DataFrame. We preprocess the dataset by 
encoding labels and scaling numeric values. For more details on how to perform these operations, 
you can refer to Chapter 3.

Now that you have reviewed the employed dataset, we can move on to the next step: selecting the 
best model.
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Selecting the best model

To select the best model, we compare the performance of the following four classi"cation algorithms, 
as already described in Chapter 3, Model Evaluation in Comet: random forest, decision tree, Gaussian 
Naive Bayes, and k-nearest neighbors. For each algorithm, we search for the optimal model by 
performing the following steps:

• Searching for the best number of folds for cross-validation

• Performing hyperparameters tuning with cross-validation

We will build a Comet experiment for each test performed. We use accuracy as a metric to select the 
best model.

Let’s start with the "rst step: searching for the best number of folds for cross-validation.

Searching for the best number of folds for cross-validation

To get familiar with cross-validation, we "rst run a simple experiment, which compares the performance 
of each algorithm with and without the use of cross-validation, with a "xed number of folds (10). 
When you build the model without cross-validation, you should use the train/test splitting operation 
to "t the model on the training set and evaluate it on the test set. On the other hand, if you build the 
model with cross-validation, you can use the whole dataset because cross-validation already performs 
train/test splitting. Perform the following steps to "nd the best number of folds for cross-validation: 

1. We split the dataset into training and test sets as follows:

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, 
test_size=0.10, random_state=42)

We reserve 10% of records for the test set and the remaining for the training set.
2. We de"ne a function, named run_experiment(), that builds an Experiment in Comet 

and then logs in Comet the accuracy of the model passed as an argument, either when using 
cross-validation or not, as follows:

from sklearn.model_selection import KFold

from sklearn.model_selection import cross_val_score

from sklearn.metrics import accuracy_score 

import numpy as np

def run_experiment(ModelClass, name, n_splits):

    experiment = Experiment()
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    experiment.set_name(name)

    experiment.add_tag(name)

    

    cv = KFold(n_splits=n_splits, random_state=1, 
shuffle=True)

    model = ModelClass()

    # calculating accuracy with KFold

    scores = cross_val_score(model, X, y, 
scoring='accuracy', cv=cv)

    experiment.log_metric('accuracy-cv', np.mean(scores))

    

    # calculating accuracy without KFold

    model.fit(X_train, y_train)

    y_pred = model.predict(X_test)

    experiment.log_metric('accuracy', accuracy_score(y_
test, y_pred))

We use KFold() with the shuffle=True parameter to perform an initial shu'e of the 
dataset. To calculate the accuracy in the case of k-fold, we use the cross_val_score() 
function. We log the accuracy obtained from cross-validation as accuracy-csv and the 
accuracy obtained without cross-validation as accuracy.

3. Now we can run the experiments simply by calling the run_experiment() function for 
the four algorithms as follows:

from sklearn.ensemble import RandomForestClassifier

from sklearn.tree import DecisionTreeClassifier

from sklearn.naive_bayes import GaussianNB

from sklearn.neighbors import KNeighborsClassifier

 

n_splits = 10

run_experiment(RandomForestClassifier, 'RandomForest',n_
splits)

run_experiment(DecisionTreeClassifier, 
'DecisionTreeClassifier',n_splits)

run_experiment(GaussianNB, 'GaussianNB',n_splits)

run_experiment(KNeighborsClassifier, 
'KNeighborsClassifier',n_splits)

We set the number of splits to 10, so for each iteration of K-Fold, 90% of the dataset is reserved 
for the training set and 10% for the test set. 
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4. Now we can see the results in Comet. We access the Comet dashboard and we click on the 
Experiments tab. #en, we select the following columns to show the results by clicking the 
Columns button, then DURATION, ACCURACY-CV, and ACCURACY. #e following "gure 
shows the results of this operation:

Figure 8.7 – The results of experiments in Comet

We note that, in general, all of the algorithms perform better with cross-validation. Gaussian 
Naive Bayes is the fastest algorithm while random forest is the slowest.

5. Now we build a parallel coordinates chart, which shows the behavior of each algorithm across 
the two metrics, accuracy-cv and accuracy. Comet provides the parallel coordinates chart as a 
built-in panel, so you can simply add it by clicking on Add | New Panel | BUILT-IN | Parallel 
Coordinates Chart. When the popup window opens, you can select accuracy as the target 
variable and add accuracy-cv on the Y-axis. #e following "gure shows the produced panel:
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Figure 8.8 – The parallel coordinates chart for accuracy with and without cross-validation

So far, we have set the number of folds to 10. However, this might not be the best choice. To 
choose the best value for the number of folds, we need to improve the preceding code in the 
following step.

6. We de"ne a function, called run_experiment_kfold_numbers(), that receives the 
maximum number of folds as input and calculates the accuracy of the model passed as an 
argument as the number of folds changes. #en, the function returns the number of folds with 
the highest score. #e following piece of code implements the described operations:

def run_experiment_kfold_numbers(ModelClass, name, max_n_
splits):

    experiment = Experiment()

    experiment.set_name(name + '-kfold')

    experiment.add_tag(name + '-kfold')

    experiment.add_tag('kfold')

    

    scores_list = []

    min_n_splits = 2

    for n_splits in range(min_n_splits, max_n_splits):

        model = ModelClass()

        # calculating accuracy with KFold

        cv = KFold(n_splits=n_splits, random_state=1, 
shuffle=True)
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        scores = cross_val_score(model, X, y, 
scoring='accuracy', cv=cv)

        mean_scores = np.mean(scores)

        scores_list.append(mean_scores)

        experiment.log_metric('accuracy-cv', mean_scores, 
step = n_splits)

        

    # get the best number of folds

    best_score_value = np.max(scores_list)

    return scores_list.index(best_score_value) + min_n_
splits

We have created a Comet experiment and we have added the kfold tag to it. In addition, 
we have set the minimum number of folds to 2 to make cross-validation work in the minimal 
condition.

7. Now we can call the function for each model as follows:

max_n_splits = 20

random_forest_kfold_value = run_experiment_kfold_
numbers(RandomForestClassifier, 'RandomForest',max_n_
splits)

decision_tree_kfold_value = run_experiment_
kfold_numbers(DecisionTreeClassifier, 
'DecisionTreeClassifier',max_n_splits)

gaussian_nb_kfold_value = run_experiment_kfold_
numbers(GaussianNB, 'GaussianNB',max_n_splits)

knn_kfold_value = run_experiment_
kfold_numbers(KNeighborsClassifier, 
'KNeighborsClassifier',max_n_splits)

We have set the maximum number of folds (max_n_splits) to 20.
8. A$er running the experiment, we are ready to see the results in Comet. For example, you can 

select KNeighborsClassifier-kfold and analyze the trend in accuracy while varying 
the number of folds, as shown in the following "gure:


